在线观看av资源网_激情欧美一区二区三区黑长吊 _精品国产欧美一区二区三区成人_成人av免费在线看

廣東可易亞半導(dǎo)體科技有限公司

國家高新企業(yè)

cn en

新聞中心

如何準確測試MOSFET的導(dǎo)通電阻-MOSFET導(dǎo)通電阻的作用與原理等解析-KIA MOS管

信息來源:本站 日期:2019-08-23 

分享到:

如何準確測試MOSFET的導(dǎo)通電阻-MOSFET導(dǎo)通電阻的作用與原理等解析

電阻簡介

電阻(Resistance,通常用“R”表示),是一個物理量,在物理學(xué)中表示導(dǎo)體對電流阻礙作用的大小。導(dǎo)體的電阻越大,表示導(dǎo)體對電流的阻礙作用越大。不同的導(dǎo)體,電阻一般不同,電阻是導(dǎo)體本身的一種特性。電阻將會導(dǎo)致電子流通量的變化,電阻越小,電子流通量越大,反之亦然。而超導(dǎo)體則沒有電阻。


電阻的本質(zhì)與單位表示

(一)本質(zhì)

正常金屬有電阻,是因為載流子會受到散射而改變動量。散射的中心就是聲子,缺陷,雜質(zhì)原子等。在超導(dǎo)情況下,組成庫伯對的電子不斷地相互散射,但這種散射不影響庫伯對質(zhì)心動量,所以有電流通過超導(dǎo)體時庫伯對的定向移動不受阻礙,沒有電阻。


(二)單位表示

導(dǎo)體的電阻通常用字母R表示,電阻的單位是歐姆(ohm),簡稱歐,符號是Ω(希臘字母,讀作Omega),1Ω=1V/A。比較大的單位有千歐(kΩ)、兆歐(MΩ)(兆=百萬,即100萬)。


KΩ(千歐), MΩ(兆歐),他們的換算關(guān)系是:兩個電阻并聯(lián)式也可表示為:1TΩ=1000GΩ;1GΩ=1000MΩ;1MΩ=1000KΩ;1KΩ=1000Ω(也就是一千進率)


功率MOSFET的導(dǎo)通電阻詳解

電阻值的測量通常比較簡單。但是,對于非常小阻值的測量,我們必須謹慎對待我們所做的假定。對于特定的幾何形狀,如電線,Kelvin方法是非常精確的。可以使用類似的方法來測量均勻樣本的體電阻率和面電阻率,但是所使用的公式不同。在這些情況下,必須考慮探針間距和樣本厚度。僅僅運用Kelvin法本身無法保證精度。如果布局和連接數(shù)發(fā)生變化,就很難精確地預(yù)測非均勻幾何形狀的電阻。


MOSFET最重要的特性之一就是漏極到源極的導(dǎo)通電阻(RDS(on))。在封裝完成之后測量RDS(on)很簡單,但是以晶圓形式測量該值更具有其優(yōu)勢。


(一)功率MOSFET的導(dǎo)通電阻-晶圓級測量

為了保證Kelvin阻值測量的精度,需要考慮幾項重要的因素:(1)待測器件(DUT)的幾何形狀;(2)到器件的接線;(3)材料的邊界;(4)各種材料(包括接線)的體電阻率。


一種測量RDS(on)的典型方法是在卡盤(Chuck)和接觸晶圓頂部的探針之間產(chǎn)生電流。另一種方法是在晶圓的背面使用探針來代替卡盤。這種方法可以精確到2.5mΩ。


一種較大的誤差來源于晶圓和卡盤之間的接觸(如圖1所示)。因為卡盤上以及晶圓背面粗糙不平,所以只有在個別點進行電氣連接。晶圓和卡盤之間的接觸電阻的數(shù)值足以給RDS(on)的測量引入較大的誤差。僅僅重新放置卡盤上晶圓的位置就會改變接觸區(qū)域并影響RDS(on)的測量結(jié)果。


MOSFET的導(dǎo)通電阻

圖1 典型的測量結(jié)構(gòu),橫截面視圖


另一種測量偏差來源是探針的布局。如果移動了強制電流探針,電流的分布模式將發(fā)生變化。這會改變電壓梯度模式,而且會改變電壓檢測探針處的電壓。


(二)功率MOSFET的導(dǎo)通電阻-相鄰晶粒方法

需要的設(shè)備包括:(1)帶有6個可用探針的探針臺;(2)電壓計;(3)電流源。將晶圓和導(dǎo)電的卡盤隔離開這一點非常重要。如果晶圓與卡盤存在接觸,那么這種接觸將造成電流以平行于基底的方式流動,改變了測量結(jié)果。可以用一張紙將晶圓和卡盤隔離開。


到漏極的連接是通過在待測器件的另一側(cè)使用相鄰的完全相同的器件來實現(xiàn)的。內(nèi)部晶圓結(jié)構(gòu)要比晶圓和卡盤之間的連接牢固得多。因此,相鄰晶粒方法要比傳統(tǒng)的RDS(on)測量方法精確得多。


圖2顯示了測量的結(jié)構(gòu)。3個MOSFET和6個探針均在圖中顯示出來,電接觸則示意性地畫出。中間的MOSFET是待測器件。


MOSFET的導(dǎo)通電阻

圖2 RDS(on)測量結(jié)構(gòu)


顯示的極性屬于N溝道MOSFET。漏極電流受限于探針的電流傳輸能力。左側(cè)的MOSFET的作用是在待測器件的漏極側(cè)施加電流。待測器件右側(cè)的MOSFET用于測量漏極電壓。


在MOSFET中,如果柵極開啟,而且漏極到源極之間沒有電流,那么漏極和源極的電壓相等。這種方法就利用這個原理來測量探針D上的漏極電壓。


柵極偏壓被連接在探針C和E之間。如果連接在探針B和E之間,那么探針B和源極焊盤之間的電壓降會降低待測器件上的實際柵極電壓。因為在RDS(on)測量過程中沒有電流通過,所以探針C上不存在電壓降。


相鄰晶粒方法確實需要右側(cè)的MOSFET(在探針D和F之間)處于工作狀態(tài)。如果這個晶粒上的柵極和源極被短路,那么測量結(jié)果可能不正確。


RDS(on)的取值是通過計算Vdc/IAB得到的,但是也可以得到更加精確的RDS(on)取值。


(三)功率MOSFET的導(dǎo)通電阻-FEA輔助確定RDS(on)測量值

盡管相鄰晶粒法很精確,但是它并不能給出RDS(on)完全精確的測量值。為了得到僅由有源區(qū)貢獻的RDS(on),可以將測量結(jié)果與仿真進行對比。有限元分析(FEA)軟件可以用來為測量結(jié)構(gòu)建模。一旦建立了有源區(qū)電阻和RDS(on)測量值之間的關(guān)系,就可以根據(jù)測量結(jié)果確定有源區(qū)的電阻。


仿真模型是3個MOSFET和晶圓的一部分的三維表示。在有限元模型中,有源區(qū)電阻是已知的。FEA軟件用來對測試結(jié)構(gòu)建模并計算RDS(on)測量結(jié)果。仿真過程進行兩次,使用兩個不同的有源區(qū)電阻值來計算結(jié)果。因為響應(yīng)的線性相當好,所以電阻值是任意選取的。對每種晶粒的尺寸,這種仿真只需要進行一次。利用仿真測量結(jié)果和實際有源區(qū)的電阻之間的關(guān)系,可以得到一個公式,用來根據(jù)相鄰晶粒方法的測量值計算有源區(qū)電阻。


(四)功率MOSFET的導(dǎo)通電阻-相鄰晶粒方法2

有幾項因素會給測量引入誤差。最重要的因素是探針的位置以及基底的電阻率。


從仿真結(jié)果可以看出,有些因素對測量結(jié)果的影響非常小。基底的厚度通常是200μm。厚度從175μm變化到225μm只會給RDS(on)帶來1%的誤差(仿真的測量結(jié)果)。同樣,背墊金屬表面電阻的變化對結(jié)果的影響也不會超過1%。仿真得到的一項驚人的結(jié)果表明,頂部金屬厚度和電阻率對結(jié)果的影響也可以忽略不計。


基底電阻率的變化會給RDS(on)測量結(jié)果帶來線性響應(yīng)。圖3顯示了遠遠超出實際基底正常分布的基底電阻率。這樣做是為了顯示響應(yīng)是線性的。


MOSFET的導(dǎo)通電阻

圖3 由于基底電阻率造成的仿真結(jié)果的誤差


探針在待測器件上的擺放位置必須保持一致。探針位置的變化會造成測量結(jié)果的變化。待測器件左側(cè)和右側(cè)器件上探針的位置(見圖2中的A和D)也會影響測量結(jié)果,但是影響沒有前者大。造成這種測量誤差的原因在于頂部金屬的表面電阻大于0。


將探針B或C從源極焊盤中心向邊緣移動會導(dǎo)致較大的誤差。圖4顯示了移動探針B或C所產(chǎn)生的誤差。每條線表示RDS(on) 2%的誤差。在繪制這張圖時,使用了5μm×5μm的網(wǎng)格。每次只移動一個探針的位置。


MOSFET的導(dǎo)通電阻

圖4 探針位置所引起的誤差


相鄰晶粒方法是一種成本低廉、精確地以晶圓形式測量MOSFET有源區(qū)的RDS(on)的方法。它在檢測不同批次晶圓的差別方面非常有用。


MOSFET的導(dǎo)通電阻的作用

mos管導(dǎo)通電阻,一般在使用MOS時都會遇到柵極的電阻選擇和使用問題,但有時對這個電阻很迷茫,現(xiàn)介紹一下它的作用:


1.是分壓作用


2.下拉電阻是盡快泄放柵極電荷將MOS管盡快截止


3.防止柵極出現(xiàn)浪涌過壓(柵極上并聯(lián)的穩(wěn)壓管也是防止過壓產(chǎn)生)


4.全橋柵極電阻也是同樣機理,盡快泄放柵極電荷,將MOS管盡快截止。避免柵極懸空,懸空的柵極MOS管將會導(dǎo)通,導(dǎo)致全橋短路


5.驅(qū)動管和柵極之間的電阻起到隔離、防止寄生振蕩的作用


降低高壓MOSFET的導(dǎo)通電阻的原理與方法

1.不同耐壓的MOS管的導(dǎo)通電阻分布。不同耐壓的MOS管,其導(dǎo)通電阻中各部分電阻比例分布也不同。如耐壓30V的MOS管,其外延層電阻僅為總導(dǎo)通電阻的29%,耐壓600V的MOS管的外延層電阻則是總導(dǎo)通電阻的96.5%。


由此可以推斷耐壓800V的MOS管的導(dǎo)通電阻將幾乎被外延層電阻占據(jù)。欲獲得高阻斷電壓,就必須采用高電阻率的外延層,并增厚。這就是常規(guī)高壓MOS管結(jié)構(gòu)所導(dǎo)致的高導(dǎo)通電阻的根本原因。


2.降低高壓MOS管導(dǎo)通電阻的思路。增加管芯面積雖能降低導(dǎo)通電阻,但成本的提高所付出的代價是商業(yè)品所不允許的。引入少數(shù)載流以上兩種辦法不能降低高壓MOS管的導(dǎo)通電阻,所剩的思路就是如何將阻斷高電壓的低摻雜、高電阻率區(qū)域和導(dǎo)電通道的高摻雜、低電阻率分開解決。如除導(dǎo)通時低摻雜的高耐壓外延層對導(dǎo)通電阻只能起增大作用外并無其他用途。


這樣,是否可以將導(dǎo)電通道以高摻雜較低電阻率實現(xiàn),而在MOS管關(guān)斷時,設(shè)法使這個通道以某種方式夾斷,使整個器件耐壓僅取決于低摻雜的N-外延層。基于這種思想,1988年INFINEON推出內(nèi)建橫向電場耐壓為600V的COOLMOS管,使這一想法得以實現(xiàn)。內(nèi)建橫向電場的高壓MOS管的剖面結(jié)構(gòu)及高阻斷電壓低導(dǎo)通電阻的示意圖如圖所示。


MOSFET的導(dǎo)通電阻


與常規(guī)MOS管結(jié)構(gòu)不同,內(nèi)建橫向電場的MOS管嵌入垂直P區(qū)將垂直導(dǎo)電區(qū)域的N區(qū)夾在中間,使MOS管關(guān)斷時,垂直的P與N之間建立橫向電場,并且垂直導(dǎo)電區(qū)域的N摻雜濃度高于其外延區(qū)N-的摻雜濃度。


當VGS<VTH時,由于被電場反型而產(chǎn)生的N型導(dǎo)電溝道不能形成,并且D,S間加正電壓,使MOS管內(nèi)部PN結(jié)反偏形成耗盡層,并將垂直導(dǎo)電的N區(qū)耗盡。這個耗盡層具有縱向高阻斷電壓,如圖(b)所示,這時器件的耐壓取決于P與N-的耐壓。因此N-的低摻雜、高電阻率是必需的。


MOSFET的導(dǎo)通電阻


聯(lián)系方式:鄒先生

聯(lián)系電話:0755-83888366-8022

手機:18123972950

QQ:2880195519

聯(lián)系地址:深圳市福田區(qū)車公廟天安數(shù)碼城天吉大廈CD座5C1


請搜微信公眾號:“KIA半導(dǎo)體”或掃一掃下圖“關(guān)注”官方微信公眾號

請“關(guān)注”官方微信公眾號:提供 MOS管 技術(shù)幫助










在线观看av资源网_激情欧美一区二区三区黑长吊 _精品国产欧美一区二区三区成人_成人av免费在线看

        日本午夜一区二区| 经典三级在线一区| 亚洲精品欧美激情| 亚洲精品久久久久久国产精华液| 日本中文在线一区| 91亚洲国产成人精品一区二三| 日韩免费观看高清完整版在线观看| 亚洲日本欧美天堂| 国产精品18久久久| 欧美一级国产精品| 亚洲一区二区三区四区中文字幕 | 国产综合色在线视频区| 欧美制服丝袜第一页| 中文字幕高清一区| 韩国精品在线观看| 欧美精三区欧美精三区| 依依成人精品视频| 成人sese在线| 久久老女人爱爱| 久久精品久久精品| 欧美精品在线视频| 一区二区三区91| 99在线精品视频| 国产亚洲美州欧州综合国| 秋霞国产午夜精品免费视频| 欧美午夜电影一区| 亚洲啪啪综合av一区二区三区| 国产v综合v亚洲欧| 久久免费偷拍视频| 九色|91porny| 欧美一级电影网站| 丝瓜av网站精品一区二区| 欧美羞羞免费网站| 一区二区三区在线观看动漫| 99国产麻豆精品| 国产精品国产三级国产aⅴ入口| 国产精品99久久久久久久vr| 亚洲精品一线二线三线| 美女一区二区在线观看| 欧美精品九九99久久| 亚洲成a人片在线不卡一二三区| 欧美主播一区二区三区美女| 亚洲精品伦理在线| 日本久久电影网| 亚洲精品菠萝久久久久久久| 色噜噜狠狠成人网p站| 亚洲欧洲制服丝袜| 91美女精品福利| 亚洲精品视频观看| 欧美在线观看你懂的| 亚洲午夜视频在线| 欧美日韩一本到| 午夜视频一区二区三区| 欧美日韩国产精品自在自线| 午夜精品久久久久| 91精品国产综合久久久蜜臀图片 | 欧美影院一区二区三区| 一区二区三区四区不卡视频 | 一区二区三区美女| 欧美在线视频日韩| 亚洲成av人片www| 欧美电影影音先锋| 玖玖九九国产精品| 日韩影视精彩在线| 亚洲国产精品成人综合| 国产一区二区三区久久悠悠色av| 久久久久久久综合色一本| 国产91精品入口| 亚洲日本丝袜连裤袜办公室| 在线免费观看一区| 午夜精品福利久久久| 日韩天堂在线观看| 国产精品系列在线观看| 国产精品国产三级国产三级人妇| 色偷偷久久一区二区三区| 亚洲国产美女搞黄色| 日韩小视频在线观看专区| 精品一区二区免费视频| 亚洲国产精品ⅴa在线观看| 91丨porny丨蝌蚪视频| 亚洲成a人在线观看| 欧美成人精品二区三区99精品| 国产福利精品导航| 亚洲人成小说网站色在线| 欧美日韩不卡在线| 国内偷窥港台综合视频在线播放| 日本一区二区久久| 色综合久久88色综合天天| 天天av天天翘天天综合网| 日韩精品一区二区三区视频 | 久久夜色精品国产噜噜av | 欧美日韩精品一二三区| 捆绑紧缚一区二区三区视频| 国产精品午夜久久| 欧美性xxxxx极品少妇| 久久爱www久久做| 国产精品高潮呻吟| 欧美日韩日本视频| 国产麻豆精品视频| 亚洲在线中文字幕| 久久网这里都是精品| 99精品国产热久久91蜜凸| 日韩高清一区在线| 中文字幕乱码亚洲精品一区| 欧美日韩亚洲国产综合| 国产精品一线二线三线| 一区二区三区在线视频观看58| 日韩免费一区二区| 色综合一区二区| 精品写真视频在线观看| 亚洲美女视频在线观看| 精品国产a毛片| 在线一区二区视频| 国产精品自拍在线| 亚洲成av人综合在线观看| 国产欧美综合色| 91精品在线免费观看| 99久久综合99久久综合网站| 蜜桃视频一区二区三区| 最新欧美精品一区二区三区| 日韩欧美一级二级三级| 一本大道久久a久久综合婷婷| 精品一区免费av| 亚洲综合丁香婷婷六月香| 欧美精品一区二| 国产在线一区观看| 亚洲国产综合人成综合网站| 国产日韩欧美亚洲| 51精品久久久久久久蜜臀| 成人短视频下载| 精品一区二区三区的国产在线播放| 一区二区三区日韩精品视频| 久久久久国产精品麻豆ai换脸| 欧美精品日日鲁夜夜添| 91色婷婷久久久久合中文| 国内久久精品视频| 午夜欧美2019年伦理| 国产精品久久久久一区二区三区共| 日韩美女视频在线| 欧美日韩在线播放| 91污在线观看| 成人精品视频一区二区三区| 青青草97国产精品免费观看无弹窗版| 亚洲精品高清视频在线观看| 国产精品午夜久久| 久久青草国产手机看片福利盒子| 91精品国产手机| 欧美日韩中字一区| 91亚洲国产成人精品一区二三| 国产九色精品成人porny| 奇米影视在线99精品| 午夜精品久久久久久久久久| 亚洲黄色录像片| 亚洲图片激情小说| 国产精品久久久久影院老司 | 午夜视频一区在线观看| 一区二区三区四区精品在线视频| 国产精品久久久久久久久晋中| 久久看人人爽人人| 欧美va在线播放| 欧美一区二区成人| 91精品一区二区三区在线观看| 欧美色精品在线视频| 色偷偷成人一区二区三区91| 91丨九色porny丨蝌蚪| www.久久久久久久久| 成人av在线网| 白白色亚洲国产精品| 成人免费av网站| av午夜一区麻豆| 91网上在线视频| 99国产精品久久久久| 9人人澡人人爽人人精品| 成人av集中营| 99免费精品视频| 99综合电影在线视频| 91在线视频播放地址| 99热这里都是精品| 91污片在线观看| 色婷婷激情综合| 欧美色图在线观看| 欧美人狂配大交3d怪物一区| 欧美高清视频一二三区 | 欧美电影免费观看高清完整版在 | 国产在线精品免费av| 国产在线观看免费一区| 国产乱码精品1区2区3区| 国产精品一区二区久久不卡| 丰满白嫩尤物一区二区| 99国产精品国产精品毛片| 色综合中文字幕国产| 99久久综合精品| 色婷婷综合中文久久一本| 欧美私人免费视频| 8x8x8国产精品| 精品伦理精品一区| 国产免费久久精品| 亚洲人吸女人奶水| 亚洲成人综合在线| 看片网站欧美日韩|